LEVENETEST(X,alpha,display) runs Levene's Test for Homogeneity of Variance. ARGUMENTS X ... data matrix (Size of matrix must be n-by-2; data=column 1, sample=column 2). alpha ... significance level (default = 0.05). display ... choice to display results in command window. Default 'off' RETURNS P ... Probability associated with F-statistic NOTES - In the Levene's test the data are transforming to yij = abs[xij - mean(xj)] and uses the F distribution performing an one-way ANOVA using y as the dependent variable (Brownlee, 1965; Miller, 1986)]. Example: From the example 10.1 of Zar (1999, p.180), to test the Levene's homoscedasticity of data with a significance level = 0.05. Diet --------------------------------- 1 2 3 4 --------------------------------- 60.8 68.7 102.6 87.9 57.0 67.7 102.1 84.2 65.0 74.0 100.2 83.1 58.6 66.3 96.5 85.7 61.7 69.8 90.3 --------------------------------- Data matrix must be: X=[60.8 1;57.0 1;65.0 1;58.6 1;61.7 1;68.7 2;67.7 2;74.0 2;66.3 2;69.8 2; 102.6 3;102.1 3;100.2 3;96.5 3;87.9 4;84.2 4;83.1 4;85.7 4;90.3 4]; Calling on Matlab the function: alpha = 0.01; display = 'on'; Levenetest(X,alpha,display) Answer is: The number of samples are: 4 ---------------------------- Sample Size Variance ---------------------------- 1 5 9.3920 2 5 8.5650 3 4 7.6567 4 5 8.3880 ---------------------------- Levene's Test for Equality of Variances F=0.0335, df1= 3, df2=15 Probability associated to the F statistic = 0.9914 The associated probability for the F test is larger than 0.05 So, the assumption of homoscedasticity was met.